Genome-Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress

نویسندگان

  • Yuehui Tang
  • Shanshan Qin
  • Yali Guo
  • Yanbo Chen
  • Pingzhi Wu
  • Yaping Chen
  • Meiru Li
  • Huawu Jiang
  • Guojiang Wu
چکیده

The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JcDREB2, a Physic Nut AP2/ERF Gene, Alters Plant Growth and Salinity Stress Responses in Transgenic Rice

Transcription factors of the AP2/ERF family play important roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, a physic nut AP2/ERF gene, JcDREB2, was functionally characterized. Real-time PCR analysis revealed that JcDREB2 was expressed mainly in the leaf and could be induced by abscisic acid but suppressed by gibberellin (GA) and salt. Transient ex...

متن کامل

Genome-Wide Investigation and Expression Profiling of AP2/ERF Transcription Factor Superfamily in Foxtail Millet (Setaria italica L.)

The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and de...

متن کامل

AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots

The transcription factor family intimately regulates gene expression in response to hormones, biotic and abiotic factors, symbiotic interactions, cell differentiation, and stress signalling pathways in plants. In this study, 170 AP2/ERF family genes are identified by phylogenetic analysis of the rice genome (Oryza sativa l. japonica) and they are divided into a total of 11 groups, including fou...

متن کامل

Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis)

The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso ba...

متن کامل

Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.

The transcription factors DREB1s/CBFs specifically interact with the DRE/CRT cis-acting element (core motif: G/ACCGAC) and control the expression of many stress-inducible genes in Arabidopsis. We isolated a cDNA for a DREB1/CBF homolog, ZmDREB1A in maize using a yeast one-hybrid system. The ZmDREB1A proteins specifically bound to DRE and the highly conserved valine at the 14th residue in the ER...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016